
Confinement of quarks in higher representations 
in view of dual superconductivity

Akihiro Shibata (KEK) 

In collaboration with

Seikou Kato (Oyama college)
Kei-Ichi Kondo (Chiba University) 
Ryutaro Matsudo (Chiba Univers)



Introduction:: dual superconductivity

 Dual superconductivity is a promising mechanism for quark confinement. 
[Y.Nambu (1974). G.’t Hooft, (1975). S.Mandelstam, (1976) A.M. Polyakov (1975)]

 In this scenario, QCD vacuum is considered as a dual super conductor.

Electro- magnetic duality

superconductor
 Condensation of electric charges (Cooper pairs)

 Meissner effect:  Abrikosov string (magnetic 

flux tube) connecting monopole and anti-

monopole

 Linear potential between monopoles

dual superconductor
 Condensation of magnetic monopoles

 Dual Meissner effect: formation of a hadron 

string (chromo-electric flux tube) connecting 

quark and antiquark

 Linear potential between quarks
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Evidence for the dual superconductivity :: fundamental rep. (I)

Abelian projection in Maximal Abelian gauge

Extracted the relevant mode for quark confinement as a diagonal part  in some gauge

SU(2) case : Abelian projection 

Abelian Dominance in the string tension by Suzuki-Yotsuyanagi (1990) , by Stack-Tucker-
Wensley (2002) 

Monopole dominance in the string tension (DeGrant-Toussaint) by Stack-Tucker-Wensley
(2002) 

SU(3) case; Abelian projection SU(2)→U(1)×U(1)

Abelian Dominance by Shiba-Suzuki (1994)

perfect dominance by Sakumichi-Suganuma (2016)

Monopole dominance by Stack-Tucker-Wensley (2002) 

Problem:

Color (global) symmetry and gauge symmetry  is broken.
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SU2  U1



Evidence for the dual superconductivity :: fundamental rep. (II)

Gauge decomposition method (our new formulation)

• Extracting the relevant mode V for quark confinement by solving the defining 
equation in the gauge independent way (gauge-invariant way)

• SU(2) case: a lattice compact representation of the Cho-Duan-Ge-Faddeev-Niemi-
Shabanov (CDGFNS) decomposition. 

we have showed  that

 almost perfect V-field dominance, magnetic monopole dominance in string tension

 chromo-electric flux tube and dual Meissner effect.

The vacuum of dual superconductor is  of  Type I 

[Phys.Rev. D91 (2015) 3, 034506]
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Evidence for the dual superconductivity :: fundamental rep. (III)

Gauge decomposition method SU(3) case

Extension of SU(2) case and  two options 

• Maximal option (Cho-Faddev-Niemi decomposition also N Cundy, Y.M. Cho et.al ] )

• Minimal option (our proposed non-Abelian dual superconductivity )

for minimal option that we have showed  in the series works

 V-field dominance, non-Abalian magnetic monopole dominance in string tension, 

 chromo-flux tube and dual Meissner effect. 

The first observation on  quark confinement/deconfinement phase transition in terms of 
dual Meissner effect at finite temperature

for minimal option

The same with the minimal option , [ours][N Cundy, Y.M. Cho et.al ] 
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To establish dual superconductivity 

• We must show that monopole plays a dominant role for the Wilson loops in  

higher representations as well as in the fundamental representation.

• In the previous studies,  these sometimes made naïve replacement  of  Wilson loop 

operator between the Yan-Mills  field and Abelian projected filed

E.g., recentry in order to test the mechanism of quark confinement, J.Greensite and R.Hollwieser

compares the double winding Wilson loop in SU(2) Yang-Mills theory  made of  Yang-Mills 

field, Abelian projected field  in the MAG, and the center in the maximal center gauge. [PRD91 

054509 (2015)]

• In this talk, we investigate the Wilson loop  by using our presented new 

formulation of the Lattice Yang-Mills theory based on the non-Abelian Stokes 

theorem.
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Non-Abelian Stokes theorem
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Kondo and Matsudo RRD92 125083 (2015)  

Non-Abelian theorem in the presentation R can be given by 

OR

WCA  XdSgC
exp ig[|AU |  XdSg exp igX

:/C
d|AU |

wheredSg
C

anddSg are the product of the Haar measureover the loop anda surface,

respectively. AU
: UAU  ig?1UdU, and | the highestweightstate of the representationR.



Lattice study of  the Wilson loop in the representation R 

• Wilson loops  in the representation R can be calculated by using the multi-
winding Wilson loop in the fundamental representation. .For example, 
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SU2 case: 2 å2  2 å2D  1 ã3

WCÓC  ?1
2
 3

2
WadjC

SU3 case: 3 å3  3Dã6

WCÓC  ?WC0,1  2WC2,0

WAd  1

2
XDSUtrV2 V : <Vx,S

W0,1  1
3
XDSUtrVD V : <Vx,S

W2,0  1
3
XDSUtrV2

Dμ[ξ] is Invariant integration measure from non-Abelain Stokes theorem.
We carry out integral  by using the reduction condition, i.e., the integral is 
replaced by V-field  which is decomposed by using  the color field determined 
from the reduction condition. (see follwing)



A new formulation of Yang-Mills theory (on a lattice) for 
fundamental representation

Decomposition of SU(N) gauge links   Phys.Rept . 579 (2015) 1-226

• For SU(N) YM gauge link, there are several possible options of decomposition 
discriminated by its stability groups:

SU(2) Yang-Mills link variables: unique  U(1)ְSU(2)

SU(3) Yang-Mills link variables: Two options 

minimal option :  U(2)ḙSU(2)×U(1)ְSU(3)   

Minimal case is derived for the Wilson loop, defined for quark in the 
fundamental representation, which follows from the non-Abelian Stokes’ 
theorem

maximal option : U(1)×U(1)ְSU(3)

Maximal case is a gauge invariant version of  Abelian projection in the maximal 
Abelian (MA) gauge. (the maximal torus group)
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WCU : Tr P <
x,xS5C

Ux,S /Tr1

WCV : Tr P <
x,xS5C

Vx,S /Tr1

Ux,S  Xx,SVx,S

WCU  const.WCV !!

x 5G  SUN

Ux,S  Ux,S
  xUx,SxS



Vx,S  Vx,S
  xVx,SxS



Xx,S  Xx,S
  xXx,Sx


NLCV-YM

Yang-Mills
theory

equipollent

M-YM

Vx,S, Xx,S

reduction

SU3OcSU3

SU3cÓSU3/U2O

Ux,Shx

The decomposition of SU(3) link variable:  minimal option



Defining equation for the decomposition : minimal option 

VSx  ASx?
2N?1

N
hx, hx, ASx?ig?1

2N?1
N

/Shx, hx,

XSx 
2N?1

N
hx, hx, ASx  ig?1

2N?1
N

/Shx, hx.

  #   

  #   

Exact solution 
(N=3)

continuum  limit

Xx,S  L x,S
 det L x,S

1/N
gx
?1 Vx,S  Xx,S

 Ux,  gxL x,SUx,det L x,S
?1/N

L x,S  Lx,SLx,S


?1
Lx,S

Lx,S  N2 ?2N  2
N

1  N?2 2N?2
N

hx  Ux,ShxSUx,S
?1 

 4N?1hxUx,ShxSUx,S
?1

Introducinga color field hx  UR8/2U 5SU3/U2 withU5SU3, a set of the

definingequationof decompositionUx,S  Xx,SVx,Sis givenby

DSKVhx  1
KVx,ShxS?hxVx,S  0,

gx  e?2Zqx/N exp?ax
0

hx ?i>
i1

3
ax

l
ux

i  1,

whichcorrespondto the continuumversionof the decomposition, ASx  VSx  XSx,
DSVSxhx  0, trXSxhx  0.
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Note that the field 

strength of  V-field

appears  in the Non-

Abelian Stokes 

theorem for 

fundamental 

representation.



Ux,S  Xx,SVx,S

x 5G  SUN

Ux,S  Ux,S
  xUx,SxS



Vx,S  Vx,S
  xVx,SxS



Xx,S  Xx,S
  xXx,Sx



The decomposition of SU(3) link variable:  maximal option

NLCV-YM
Yang-Mills

theory

equipollent

M-YM

Vx,S, Xx,S

reduction

SU3OcSU3

Ux,S, n3, n8

SU3cÓSU3/U1ÓU1O

Gauge invariant construction of the Abelian projection to maximal torus group U(1) 
x U(1) in MA gauge. 



Defining equation for the decomposition: maximal option 

Xx,S  K x,S
 detKx,S1/3gx

?1, Vx,S  gxK x,SdetKx,S?1/3

where

K x,S :  Kx,SKx,S


?1
Kx,S, K x,S

  Kx,S
 Kx,SKx,S


?1

Kx,S  1  6nx
3

Ux,SnxS
3

Ux,S
  6nx

8
Ux,SnxS

8
Ux,S



By introducingcolor fields nx
3  xR3/2, nx

8  xR8/2

5SU3cÓSU3/U1ÓU1O, a set of the definingequationfor the

decompositionUx,S  Xx,SVx,Sis givenby

DS
LVnx

k  1
LVx,SnxS

k ?nx
k

Vx,S  0, (k  3, 8

gx  exp2Zin/N expi>
j3,8

ajnx
j  1

Coresspondingto the continuumversionof the dexompositionASx  VSx  XSx
DSVSnkx  0, trnkxXSx  0, k  3, 8
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Reduction condition

• The decomposition is uniquely determined for a given set of link variables Ux,m and color 
fields which is given by minimizing the reduction condition.

• The reduction condition is introduced such that the theory in terms of new variables is 
equipollent to the original Yang-Mills theory, i.e.,  defining an effective gauge-Higgs model 
whose kinetic term is  given by the reduction condition 
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for givenUx,S

F; U 

>
x,S

tr >
j3,8

DSKUnj

DSKUnj representedMA

>
x,S

tr >
j
DSKUn8


DSKUn8 representiedn8

>
x,S

tr >
j
DSKUn3


DSKUn3 representedn3

n3wherenj : Hj, Hj Cartangenerators, andDS
KUnj : Ux,SnxS

j ?nx
j

Ux,S

Note that  the n8-reduction determines only n8 color field,  n3 is arbitrary but  n32
 1

6
1  1

2 3
n8



Maximal option with the MA reduction
as gauge invariant version of Abelian projection in MA gauge

MA reduction condition  is rewritten into the gauge fixing of maximal Abelian gauge.

FMA; U  >
x,S

tr >
j3,8

DSKUnj

DSKUnj  >

x,S

2?2>
j3,8

trUx,S


nx
j

Ux,SnxS
j 

 >
x,S

2?2>
j3,8

trxUx,S
 x

 HjxSUx,SxS
 Hj  >

x,S

2 ?FMAG; U

Decomposition for maximal option id given by 

Kx,S  Ux,S 6nx
3

Ux,SnxS
3  6nx

8
Ux,SnxS

8  x


Ux,S 6
R3

2


Ux,S
R3

2
 6
R8

2


Ux,S
R8

2
xS



 xdiag
ux,S

11 , 

ux,S

22 , 

ux,S

33 , xS


Vx,S  Kx,SKx,S
 

?1/2
Kx,Sdet Kx,S

?1/3  diag
ux,S

11

ux,S
11

,
ux,S

22

ux,S
22

,
ux,S

33

ux,S
33

det
ux,S

11 
ux,S

22 
ux,S

33 
?1/3



Lattice data

SU(2) case ::   

standard Wilson action  244 lattice β=2.5 

hyper-blocking smearing 

SU(3) case ::    

standard Wilson action  244 lattice β=6.2, β=6.0

APE smearing  

various reduction condition (MA, n3, n8)
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SU(2) case: preceding study

• Naively extended Abelian projection does not reproduce the correct behavior of 
Wilson  loops in higher representations.

• For example, in the adjoint rep. in SU(2) gauge theory, the Abelian projected 
Wilson loop,

approaches 1/3 other than 0  [G.I.Poulis, PRD 54 , 6974 (1996) ]

After testing several possible operators, the correct expression has found. [Piulis
(1996)] 

M.N.Chernodub et.al performed numerical simulation according to Poulis. 
[PRD70,14506 (2004)]
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V  <
x,S5C

Vx,SWAbel  1

3
trV2  1



SU(2) :: General formula
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Wj1UC  1
3
trU2  1

Wj1VC  1
2
XDSUtrV2 u 1

2
trVn2

General form of the higher dimensional Wilson loop by using the fundamental 
representation. 

In case of j =1  

WjU  1
2j  1
>
n0

j

trU2j?n U  <
x,S5C

Ux,S

WjV  1
2
XdSUtrV2j V  <

x,S5C

Vx,S

  #   

  #   



SU(2) adj. 
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Preliminary

• V dominance for the static potential 
is found. 

• It seems that the string breaking for 
YM field starts at R = 0.7fm, but not 
for V (Abelian) field.

• This is consistent with Chernodub
et.al (2004)

T=6



SU(3) case  : Yang-Mills field
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U  <
x,S5C

Ux,S

3  1, 0

8  1, 1

6  2, 0

15a  2, 1

10  3, 0

. . . .

trU1,0  trU

trU1,1  |trU|
2 ?1

trU2,0  1
2
trU2  trU2

trU2,1  trUDtrU2,0?trU

trU3,0  1
6
trU3  3trUtrU2  2trU3

. . . . .



SU(3) ::  general formula for  the restricted field 

• Where V-field must be decomposed by using the maximal option.

• Invariant integration measure Dμ[ξ] is dropped by using the reduction condition, 
i.e., V-field is obtained by using  the color field determined from the reduction 
condition.

• Note that we have arbitrariness  in  choice of  the reduction condition

 In this talk, we use 3 types of the reduction conditions: MA, n3, n8
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Wm1,m2  1
6
XDSUtrVm1trVm2 D?trVm1?m2 (m1 ®0, m2 ®0)

Wm1,0  1
3
XDSUtrVm1 m2  0

W0,m2  1
3
XDSUtrVm2 D m1  0



SU(3) [0,1] (fundamental) representation

APE smearing   N = xx,  α＝0.2

β=6.2 , fit range  [3,12]

full (N=28) : 

σ = 0.0293314 +/- 0.00061

n3 (N=28) :

σ = 0.0293018 +/-0.000395

MA (N=8) : 

σ = 0.0244112 +/- 0.0000338

n8 (decomsed by minmal op, N=28):

σ = 0.026503 +/- 0.0002966

n8max (N=4) : 

σ = 0.0261281 +/- 0.000332
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VR, T  ?logWR,T1D/WR,T1D



SU(3) [1,1] (Adjoint) representation 
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APE smearing   N = xx,  α＝0.2
β=6.2 , fit range  [3,12]

full (N=28) : 
σ = 0.0699755 +/- 0.002781

n3 (N=28) : 
σ = 0.056761 +/- 0.002224

MA (N=8) :
σ = 0.0495824 +/- 0.002005

VR, T  ?logWR,T1D/WR,T1D



Adjoint representation : b=6.0 
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VR, T  ?1
T

logWR,TD

It seems that the string breaking for YM field starts at R/e=10.  As for MA reduction  

no strung breaking appears.  As for n3-reduction,  

full MA-reduction n3-reduction



SU(3) [0,2] (6-dimension) representation
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VR, T  ?1
T

logWR,TDAPE smearing   N = xx,  α＝0.2
β=6.2 , fit range  [3,12]

full (N=24) :
σ = 0.0923932 +/- 0.001724

n3 (N=24) : 
σ = 0.0702499 +/- 0.0008097

MA (N=8) :
σ = 0.063367 +/- 0.0008151

n8 (max, N=8) : 
σ = 0.0567384 +/- 0.00288



SU(3) [0,2] representation
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VR, T  ?1
T

logWR,TD

YM (Cornell)

YM (linear)

]0,2(cornell)  ]0,2(linear) p]n8



Summary

• The Abelian projected Wilson loop for a higher representation, which made of 
naïve replacement of gauge link variable, does not reproduce the correct behavior 
of the original Wilson loop.

• Through the non-Abelian Stokes theorem (NAST), we have obtained the another 
Wilson loop, which is essentially same as the Abelian projected Wilson loop in the 
fundamental representation, but is different from that  in higher representation.

• We have investigated Wilson loop average in the higher representation by using  
lattice simulation, and obtained correct behavior, i.e.,   restricted field (V)  
dominance in the string tension  for  the higher representation:

 in the adjoint representation for SU(2) Yang-Mills theory

 in  the adjoint and 6-dimansiona representation for SU(3) YM theory.
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Outlook

• Need higher statistics and tuning of the smearing parameters

• Check in other representations 

• String breaking,  N-arity.

• Monopole dominance in the string tension for higher representation.

• Casimir scaling is achieved or not  in the intermediate scale and on in the string 
tension.

• ………..
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